

High energy pulsed DPSS Nd:YAG lasers

- Pulse energies 1J to 5J • Repetition rates up to 200Hz

State of the art high performance diode pumped lasers require a multitude of complex parts working seamlessly together.

At Litron, we engineer superior laser performance by designing, manufacturing and controlling every one of these critical elements in-house.

High energy diode pumped nanosecond lasers combined with high repetition rates are sought for an ever growing range of new applications. Very high stability and robust specifications are required, with easy maintenance to ensure minimal downtime as well as customisation with the ability to incorporate an extensive range of options.

This note describes Litron's vertical integration, controlling each critical function in-house to produce a fully customisable Plasma+ Series laser system.

APPLICATIONS

- **Military & Defence**
- **Plasma Science**
- **LiDAR & Remote Sensing**
- **Thomson Scattering**
- **Laser Shock Peening**
- **Spectroscopy**
- **Ablation including Space Debris Clearing / Ablation**
- **Fusion Technology**
- **Laser Lift Off**

PLASMA+

Pump Diodes

Litron has invested heavily in an in-house ISO Class 6 cleanroom facility to assemble and test a wide range of laser diode packages. Our diode packages have excellent performance characteristics and a high degree of reliability. We have developed advanced manufacturing and test processes to ensure ongoing quality and integrity. We offer a warranty of 4 billion shots or 2 years (whichever is sooner) and expected lifetimes in excess of 10 billion shots.

Pumping Chamber

Our mechanical engineering team designs both the diode packaging and pumping chambers in tandem to provide the most efficient and uniform pumping of the Nd:YAG rods whilst also giving Litron the ability to scale pulse energies of both the laser oscillators and amplifiers.

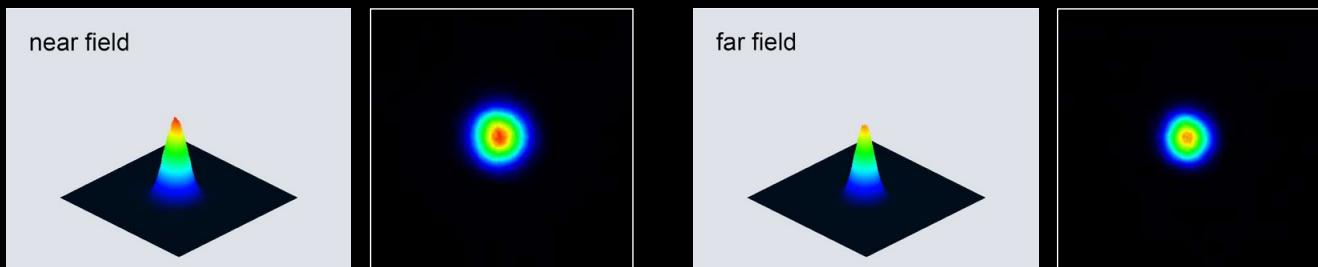
Chillers

In a DPSS laser the chiller is a critical component in the system. The emission wavelength of the pump diodes is temperature dependent, to keep the pumping and laser performance optimised it is essential that the chiller is high performing, stable and reliable. Our chiller design and production is performed entirely in-house at Litron with $\pm 0.1^\circ\text{C}$ temperature stability. Free standing or rack mounted chillers with water-air-cooling or water-water options are available.

Electronics

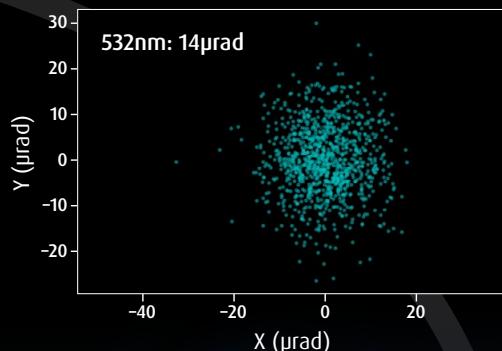
Litron's advanced power electronics incorporates wide band-gap semiconductors, digitally optimised control and enhanced layout techniques maximising laser energy while boosting system efficiency. Our drive electronics are developed in tandem with the pump diodes to deliver peak stability and reliability. The development of in-house embedded electronics facilitates comprehensive monitoring for system diagnostics.

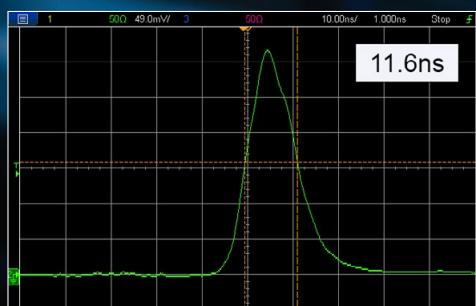
Software and Touchscreen GUI


Every laser comes as standard with the touchscreen Litron Universal Controller (LUCi) which allows extensive control and parameter monitoring functions. Separate software is also supplied to control the laser from a PC. DLLs are available for integration into OEM front-end machine control software. All of the software is written by Litron, and full support is provided.

TECHNICAL DATA

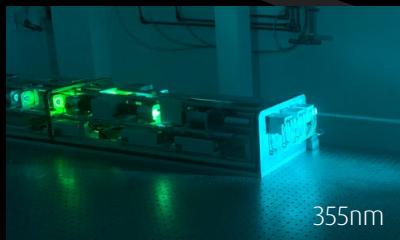
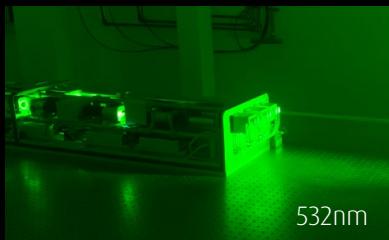
Model	Plasma+ 1000	Plasma+ 2000	Plasma+ 3000	Plasma+ 4000	Plasma+ 5000	All Models	
Repetition Rate (Hz)	100/200	100/200	100/200	100/200	10-100		
Output Energy (mJ)						Operation	
1064nm	1000	2000	3000	4000	5000	Control ⁽⁶⁾	RS232
532nm	500	1000	1500	2000	2500	Q-switch Trigger and Sync	TTL
355nm	230	460	690	920	1150		
Pulse Stability (%RMS)						Services	
1064nm	0.3	0.3	0.3	0.3	0.3	Voltage (VAC)	230-250
532nm	0.5	0.5	0.5	0.5	0.5	Frequency (Hz)	50 or 60
355nm	1.0	1.0	1.0	1.0	1.0	Power	Single/3 Phase
						Ambient (°C) ⁽⁷⁾	5-35
						Diode Warranty (shots)	4×10 ⁹
Pulse Width (ns) ⁽¹⁾							
1064nm	<15	<15	<15	<15	<15		
Beam Parameter						All specifications at 100Hz unless otherwise stated.	
Beam Diameter (mm) ⁽²⁾	9.5	12.5	18.0	18.0	18.0	(1) FWHM.	
Beam Divergence (mrad) ⁽³⁾	≤0.8	≤0.8	≤0.8	≤0.8	≤0.8	(2) 100% beam diameter at laser exit port.	
Pointing Stability (μrad) ⁽⁴⁾	≤15	≤15	≤15	≤15	≤15	(3) Full angle at specified beam diameter.	
Timing Jitter (ns) ⁽⁵⁾	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	(4) Half angle.	
External Cooling	Air or Water	Water	Water	Water	Water	(5) RMS with respect to Q-switch trigger input.	
						(6) Full software suite and programming tools supplied.	
						(7) 0 to 80% non-condensing atmosphere.	


Beam profiles


Pulse stability

Pointing stability

Pulse width

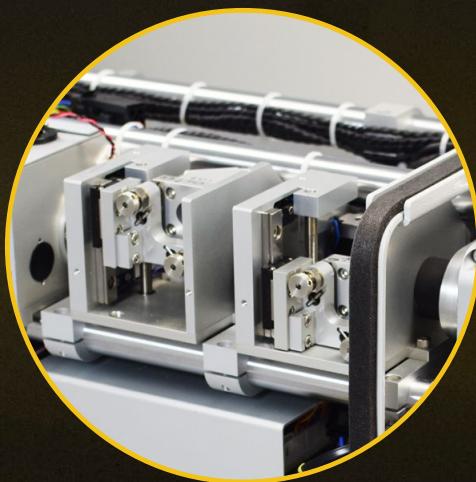
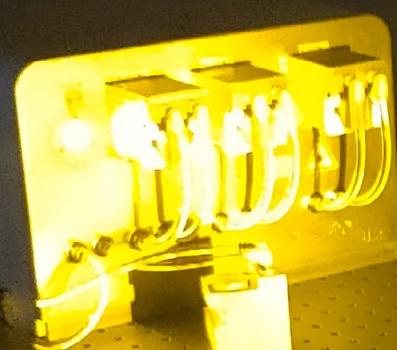


CUSTOMISATION

Constructing the Plasma+ on an industrial grade Invar-rail design offers many advantages over conventional base-plate solid state laser designs. Most notably Invar provides excellent mechanical and thermal stability, which is critical to ensure constant and reliable alignment. Moreover, the rail-based modular design allows for complete customisation to fit each user's exacting requirements. The following extensive range of options are available.

Choice of Resonator

Litron offers more resonator options to best match each application requirement. The Plasma+ systems are offered as stable, stable-telescopic and Gaussian-coupled unstable.

Motorised harmonic generation with closed-loop diode feedback



Tunable OPOs and extended range UV

Diode pointer

ADDITIONAL OPTIONS:

- Motorised optical attenuators for hands-free energy control
- Injection seeder for SLM operation
- Beam expanding or collimating telescopes
- Process shutters and on-board energy monitoring

Motorised beam switching units for hands-free wavelength selection

Our policy is to improve the design and specification of our products. The details given in this document are not to be regarded as binding.

Litron Lasers Ltd
8 Consul Road, Rugby,
Warwickshire CV21 1PB
England.

T +44 (0)1788 574444
F +44 (0)1788 574888
E sales@litron.co.uk

Litron Lasers
www.litronlasers.com